Linear Algebra Examples

Solve Using an Inverse Matrix x-2y=3 , -2x+4y=6
x-2y=3x2y=3 , -2x+4y=62x+4y=6
Step 1
Find the AX=BAX=B from the system of equations.
[1-2-24][xy]=[36][1224][xy]=[36]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[dbca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A1=1|A|[dbca]
Find the determinant of [1-2-24][1224].
Tap for more steps...
These are both valid notations for the determinant of a matrix.
determinant[1-2-24]=|1-2-24|determinant[1224]=1224
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
(1)(4)+2-2(1)(4)+22
Simplify the determinant.
Tap for more steps...
Simplify each term.
Tap for more steps...
Multiply 44 by 11.
4+2-24+22
Multiply 22 by -22.
4-444
4-444
Subtract 44 from 44.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[4-(-2)-(-2)1]10[4(2)(2)1]
Simplify each element in the matrix.
Tap for more steps...
Rearrange -(-2)(2).
10[42-(-2)1]10[42(2)1]
Rearrange -(-2)(2).
10[4221]10[4221]
10[4221]10[4221]
Multiply 1010 by each element of the matrix.
[104102102101][104102102101]
Rearrange 104104.
[Undefined102102101][Undefined102102101]
Since the matrix is undefined, it cannot be solved.
UndefinedUndefined
Undefined
 [x2  12  π  xdx ]  x2  12  π  xdx