Enter a problem...
Linear Algebra Examples
x-2y=3x−2y=3 , -2x+4y=6−2x+4y=6
Step 1
Find the AX=BAX=B from the system of equations.
[1-2-24]⋅[xy]=[36][1−2−24]⋅[xy]=[36]
Step 2
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[d−b−ca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A−1=1|A|[d−b−ca]
Find the determinant of [1-2-24][1−2−24].
These are both valid notations for the determinant of a matrix.
determinant[1-2-24]=|1-2-24|determinant[1−2−24]=∣∣∣1−2−24∣∣∣
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
(1)(4)+2⋅-2(1)(4)+2⋅−2
Simplify the determinant.
Simplify each term.
Multiply 44 by 11.
4+2⋅-24+2⋅−2
Multiply 22 by -2−2.
4-44−4
4-44−4
Subtract 44 from 44.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[4-(-2)-(-2)1]10[4−(−2)−(−2)1]
Simplify each element in the matrix.
Rearrange -(-2)−(−2).
10[42-(-2)1]10[42−(−2)1]
Rearrange -(-2)−(−2).
10[4221]10[4221]
10[4221]10[4221]
Multiply 1010 by each element of the matrix.
[10⋅410⋅210⋅210⋅1][10⋅410⋅210⋅210⋅1]
Rearrange 10⋅410⋅4.
[Undefined10⋅210⋅210⋅1][Undefined10⋅210⋅210⋅1]
Since the matrix is undefined, it cannot be solved.
UndefinedUndefined
Undefined